Donate

We put a lot of effort and resources to keep the materials you enjoy in LearnClax free.

Consider making a donation by buying points.

You will find **Pure Mathematics for Advanced Level ,2nd edition PDF** which can be downloaded for FREE on this page. Pure Mathematics for Advanced Level ,2nd edition is useful when preparing for MTS105 course exams.

**Pure Mathematics for Advanced Level ,2nd edition** written by **BD Bunday, Mulholland** was published in the year 1983 and uploaded for 100 level **Science and Technology students** of **Federal University of Agriculture, Abeokuta (FUNAAB)** offering **MTS105** course.

Pure Mathematics for Advanced Level ,2nd edition can be used to learn Finite sequences, finite series, complex numbers, binomial theorem, quadratic function, quadratic equation, Trigonometric equations, Trigonometric functions, solution of triangles, differential calculus, differentiation, differentiation techniques, logarithmic functions, exponential functions, intefration, integral calculus, differential equations, co-ordinate geometry, straight line, parabola, ellipse, hyperbola, numerical methods, vectors .

Technical Details |
---|

Uploaded on: 27-March-2021 |

Size: 10.63 MB |

Number of points needed for download: 35 |

Number of downloads: 12 |

other related books

Department: Science and Technology

Author: CJ Tranter

school: Federal University of Agriculture, Abeokuta

course code: MTS105

Topics : Mathematics, quadratic equations, indices, logarithms, remainder theorem, undetermined coefficients, partial fractions, arithmetic progression, geometrical progression permutations, combinations, binomial theorem, trigonometric ratio, addition theorem, sine formula, cosine formula, tangent formula, differential calculus, differentiation, logarithmic functions, exponential functions, coordinates, coordinate geometry, parabola, ellipse, hyperbola, complex numbers, matrices

Go to Advanced Level Pure Mathematics, 4th Edition PDFDepartment: Science and Technology

Author: Frank Ayres, Elliott Mendelson

school: Nnamdi Azikiwe University

course code: MAT231

Topics : Calculus, linear coordinate systems, absolute value, inequalities, rectangular coordinate systems, lines, circles, parabolas, ellipses, hyperbolas, conic sections, functions, limits, continuity, continuous function, derivative, delta notation, chain rule, inverse functions, implicit differentiation, tangent lines, normal lines, critical numbers, relative maximum relative minimum, cure sketching, concavity, symmetry, points of inflection, vertical asymptotes, trigonometry, trigonometric functions, inverse trigonometric functions, rectilinear motion, circular motion, differentials, Newton's method, antiderivatives, definite integral, sigma notation, natural logarithm, exponential functions, logarithmic functions, L'hopital's rule, exponential growth, decay, half-life, integration by parts, trigonometric integrands, trigonometric substitutions, improper integrals, parametric equations, curvature, plane vectors, curvilinear motion, polar coordinates, infinite sequences, infinite series, geometric series, power series, uniform convergence, Taylor's series, Maclaurin series, partial derivatives, total differential, differentiability, chain rules, space vectors, directional derivatives, vector differentiation, vector integration, double integrals, iterated integrals, centroids, triple integrals, Separable Differential Equations, Homogeneous Functions, Integrating Factors, Second-Order Equations

Go to Schaum's Outline of Calculus, 6th edition PDFDepartment: Engineering

Author: Erwin Kreyszig, Herbert Kreyszig, Edward

school: University of Nigeria, Nsukka

course code: MTH207

Topics : Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Go to Advanced Engineering Mathematics ,10th Edition PDFDepartment: Engineering

Author: Herbert Kreyszig, Erwin Kreyszig

school: University of Nigeria, Nsukka

course code: MTH207

Topics : Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Go to Advanced Engineering Mathematics Student Solutions Manual and Study Guide,10th edition Volume 1&2 PDFDepartment: Science and Technology

Author: GeorgeThomas, Joel Hass, Christopher Heil, Maurice Weir

school: University of Ilorin

course code: MAT112

Topics : Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Go to Thomas Calculus ,14th edition PDFDepartment: Science and Technology

Author: Elka Block, Frank Purcell

school: University of Ilorin

course code: MAT112

Topics : Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Go to Thomas Calculus Early Transcendentals, 13th Edition Instructors Solutions Manual PDFDepartment: Engineering

Author: John Bird

school: Federal University of Technology, Owerri

course code: ENG307, EN308

Topics : Algebra, partial fraction, logarithm, exponential function, inequality, arithmetic progression, geometric progression, binomial series, Maclaurin's series, iterative method, binary, octal, hexadecimal, boolean algebra, logic circuits, trigonometry, circle, Trigonometric waveforms, hyperbolic functions, Trigonometric identities, Trigonometric equation, compound angles, irregular area, irregular volume, graph, complex numbers, De Moivre’s theorem, matrix, determinant, vector geometry, vector, scalar product, vector product, differentiation, calculus, integration, differential equation, parametric equations, implicit functions, Logarithmic differentiation, hyperbolic functions, Partial differentiation, Total differential, rate of change, Maxima, minima, saddle point, integral calculus, hyperbolic substitution, trignometric substitution, Integration by parts, Reduction formulae, double integrals, triple integrals, Numerical integration, Homogeneous first-order differential equation, first-order differential equation, differential calculus, Linear first-order differential equation, Numerical methods, power series, Statistics, probability, Mean, median, mode, standard deviation, binomial distribution, Poisson distribution, normal distribution, Linear correlation, Linear regression, Sampling, estimation theories, Significance testing, Chi-square test, distribution-free test, Laplace transform, Inverse Laplace transform, Heaviside function, Fourier series, periodic functions, non-periodic function, even function, odd function, half-range fourier series, harmonic analysis, Z-Transform

Go to Higher Engineering Mathematics ,Eighth edition PDFDepartment: Science and Technology

Author: Joel Hass, Christopher Heil, Przemyslaw Bogacki, Maurice Weir, George Thomas

school: Federal University of Agriculture, Abeokuta

course code: MTS241

Topics : functions, combining functions, trigonometric functions, exponential functions, inverse functions, logarithms, limit, continuity, derivatives, differentiation rules, chain rule, implicit differentiation, inverse trigonometric functions, related rates, linearization, differentials, mean value theorem, monotonic functions, applied optimization, integrals, transcendental functions, hyperbolic functions, integration, trigonometric integrals, trigonometric substitution, numerical integration, improper integrals, infinite sequences, infinite series, integral test, comparison test, absolute convergence, power series, Taylor series, Maclurin series, parametric equations, polar coordinates, vectors, dot product, cross product, vector-valued functions, partial derivatives, saddle points, multiple integrals, vector fields, Euler equations

Go to University calculus early transcendentals, 4th edition PDFDepartment: Science and Technology

Author: George Thomas, Ross Finney

school: Federal University of Agriculture, Abeokuta

course code: MTS101

Topics : Calculus, Analytic Geometry, real numbers, real line, coordinates, functions, shifting graphs, trignometric functions, rates of change, limits, continuity, tangent lines, derivative of a function, differentiation rules, rates of change, chain rule, derivatives, implicit differentiation, rational exponents, extreme values of functions, mean value theorem, first derivative test, optimization, linearization, differentials, Newton's method, integration, indefinite integrals, differential equations, initial value problems, mathematical modelling, Riemann sums, definite integrals, mean value theorem, fundamental theorem, numerical integration, cylindrical shells, application of integrals, work, fluid pressure, inverse functions, natural logarithms, transcendental functions, L'Hopital's rule, inverse trignometric functions, hyperbolic functions, first order differential equations, Euler's numerical method, Integration formulas, integration by parts, integral tables, infinite series, power series, Maclaurin series, Taylor series, conic sections

Go to Calculus and Analytic Geometry,9th Edition PDFDepartment: Science and Technology

Author: Robert Bartle, Donald Sherbert

school: Nnamdi Azikiwe University

course code: MAT251

Topics : real analysis, sets, functions, mathematical induction, finite sets, infinite sets, real numbers, absolute value, real line, intervals, sequences, series, limit theorems, monotone sequences, Cauchy criterion, limits, limit theorems, continuous functions, uniform continuity, inverse function, monotone functions, derivative, mean value theorem, L' Hospital rule, Taylor's theorem, Riemann integral, Riemann integral functions, fundamental theorem, Darboux integral, approximate integrations, pointwise convergence, uniform convergence, exponential functions, logarithmic function, trigonometric functions, infinite series, absolute convergence, infinite integrals, convergence theorems, continuous functions, metric spaces

Go to Introduction to Real Analysis, 4th Edition PDFDepartment: Science and Technology

Author: Richard Bronson, Gabriel Costa

school: University of Ibadan

course code: MAT241

Topics : Differential Equations, Modeling, Qualitative Methods, First-Order Differential Equations, Separable First-Order Differential Equations, Exact First-Order Differential Equations, Linear First-Order Differential Equations, Linear Differential Equations, Second-Order Linear Homogeneous Differential, nth-Order Linear Homogeneous Differential Equations, Method of Undetermined Coefficients, Variation of Parameters, Initial-Value Problems, Laplace Transform, matricies, Inverse Laplace Transforms, Convolutions, Unit Step Function, power series, Series Solutions, Classical Differential Equations, Gamma Functions, Bessel Functions, Partial Differentiall Equations, Second-Order Boundary-Value Problems, Eigenfunction Expansions, Difference Equations

Go to Schaum’s Outline of Differential Equations ,4th edition PDFDepartment: Engineering

Author: Murray Spiegel

school: Federal University of Agriculture, Abeokuta

course code: MCE341

Topics : real numbers, rule of algebra, limits, continuity, derivatives, differentiation formula, Taylor series, Partial derivatives, maxima, minima, Lagrange multiplier, complex numbers, ordinary differential equations, linear differential equations, operator notation, linear operators, linear dependence, Wronskians, Laplace transforms, vector analysis, vector algebra, Jacobians, Orthogonal curvilinear coordinates, Fourier series, Dirichlet conditions, orthogonal functions, Fourier integrals, Fourier transforms, Gamma function, beta function, error function, exponential integral, sine integral, cosine integral, Fresnel sine Integral, Fresnel cosine Integral, Bessel function, Legendre functions, Legendre differential equation, Hermite polynomials, Laguerre polynomial, sturm-Liouville systems, heat conduction equation, vibrating string equation, complex variables, conformal mapping, Cauchy-Riemann equations, Cauchy's theorem, Laurent's series, conformal mapping, complex inversion formula, matrices, Cramer's rule, determinants, Euler's equation, Hamilton's principle

Go to Schaum's outline of advanced mathematics for engineers and scientists PDFDepartment: Science and Technology

Author: Gabriel Nagy

school: University of Ilorin

course code: MAT211

Topics : Ordinary Differential Equations, linear constant coefficient equations, initial value problem, integrating factor method, linear variable coefficient equation, Bernoulli equation, separable equation, Euler Homogenous equations, exact differential equation, exponential decay, Newton's cooling law, carbon-14 dating, nonlinear equations, second order linear equations, variable coefficients, Homogenous Constant Coefficients Equations, Euler Equidimensional Equation, Nonhomogeneous Equations, power series, Laplace transform, discontinous sources, Two-Dimensional Homogeneous Systems, Two-Dimensional Phase Portraits, Autonomous Systems, Stability, Boundary Value Problems, linear algebra, matrix algebra, Eigenvalues, Eigenvectors, Diagonalizable Matrices, Matrix Exponential, exponential function

Go to Ordinary Differential Equations PDFDepartment: Engineering

Author: Ken Stroud, Dexter Booth

school: Federal University of Technology, Owerri

course code: ENG307, ENG308

Topics : Advanced engineering mathematics, numerical solution, Newton-Raphson iterative method, numerical methods, linear interpolation, graphical interpolation, Lagrange interpolation, Laplace transform, convolution theorem, periodic functions, Z transform, difference equations, Invariant linear systems, Differential equations, Fourier series, harmonics, Dirichlet conditions, Gibbs’ phenomenon, Complex Fourier series, complex spectra, Fourier’s integral theorem, Leibnitz-Maclaurin method, power series, Cauchy-Euler equi-dimensional equations, Leibnitz theorem, Bessel’s equation, Gamma functions, Bessel functions, Legendre’s equation, Legendre polynomials, Rodrigue’s formula, Sturm-Liouville systems, Orthogonality, Taylor’s series, First-order differential equations, Euler's method, Runge-Kutta method, Matrix algebra, Matrix transformation, Eigenvalues, direction fields, phase plane analysis, nonlinear systems, dynamical systems, Bifurcation, partial differentiation, Elliptic equations, Hyperbolic equations, Parabolic equations, multiple integration, Green’s theorem, integral functions, error function, elliptic functions, vector analysis, Curvilinear coordinates, complex analysis, complex mapping, Maclaurin series, optimization, linear programming, Linear inequalities

Go to Advanced engineering mathematics PDFDepartment: Science and Technology

Author: JF Talbert, HH Heng

school: Federal University of Agriculture, Abeokuta

course code: MTS101

Topics : coordinate geometry, simultaenous equations, functions, domain, range, quadratic function, binomial expansions, radians, arcs, sectors, trigonometry, vectors, calculus, differentiation, integration, remainder theorem, factor theorem, identical polynomials, arithmetic progressions, geometric progressions, exponential functions, logarithmic functions, conversion to linear form

Go to Additional Mathematics ,6th edition PDFDepartment: Science and Technology

Author: YM Aiyesimi

school: Edo University

course code: MTH221

Topics : differential equations, separable equations, exact equation, Inexact Differential Equations, Homogeneous Differential Equations, Bernoulli’s Differential Equations, Laplace transform, partial differential equations, Elliptic Differential Equation, Parabolic Differential Equation, Hyperbolic Differential Equation

Go to Introduction to differential equations PDFDepartment: Science and Technology

Author: Alhassan Charity

school: Edo University

course code: MTH112

Topics : Vector, coordinate geometry, Two Dimensional Co-ordinate Geometry, straight line, circle, parabola, ellipse

Go to Vector and coordinate geometry PDFDepartment: Science and Technology

Author: MTS FUNAAB

school: Federal University of Agriculture, Abeokuta

course code: MTS105

Topics : Binomial Theorem, Binomial Series, Binomial Expansion

Go to Binomial Theorem,Binomial Series,Binomial Expansion and Applications PDFDepartment: Science and Technology

Author: William Trench

school: Federal University of Technology, Owerri

course code: MTH203

Topics : Differential Equations, first order equations, Linear First Order Equations, separable equations, exact equations, integrating factors, numerical methods, Euler's method, Improved Euler Method, Runge-Kutta Method, Autonomous Second Order Equations, Linear Second Order Equations, Homogeneous Linear Equations, Constant Coefficient Homogeneous Equations, Non homogeneous Linear Equations, power series, Laplace transforms, inverse Laplace transform, initial value problem, unit step function, convolution, Linear Higher Order Equations, Linear Systems of Differential Equations, Constant Coefficient Homogeneous Systems

Go to Elementary Differential Equations PDFDepartment: Science and Technology

Author: William Trench

school: Federal University of Technology, Owerri

course code: MTH203

Topics : Differential Equations, first order equations, Linear First Order Equations, separable equations, exact equations, integrating factors, numerical methods, Euler's method, Improved Euler Method, Runge-Kutta Method, Autonomous Second Order Equations, Linear Second Order Equations, Homogeneous Linear Equations, Constant Coefficient Homogeneous Equations, Non homogeneous Linear Equations, power series, Laplace transforms, inverse Laplace transform, initial value problem, unit step function, convolution, Linear Higher Order Equations, Linear Systems of Differential Equations, Constant Coefficient Homogeneous Systems

Go to Student solutions manual for Elementary differential equations PDFDepartment: Science and Technology

Author: Robert Adams, Christopher Essex

school: Federal University of Agriculture, Abeokuta

course code: MTS101

Topics : Calculus, limits, continuity, transcendental function, differentiation, integration, conics, parametric curvess, polar curves, sequence, series, power series, vectors, coordinate geometry, vector functions, curves, partial differentiation, multiple integration, vector fields, vector calculus, differential forms, exterior calculus, ordinary differential equations

Go to Instructor's solution manual Calculus ,9th edition PDFrelated Past Questions

Department: Science and Technology

Year Of exam: 2020

school: University of Benin

course code: MTH123

Topics : Vectors, coordinate geometry, statistics

Go to Vectors, coordinate geometry and statistics assignment questions past questionDepartment: Science and Technology

Year Of exam: 2018

school: Federal University of Technology, Owerri

course code: MTH203

Topics : Ordinary Differential Equations, Differential equations, Laplace transform

Go to Ordinary Differential Equations 1-2014-2018 past questionDepartment: Science and Technology

Year Of exam: 2017

school: University of Ilorin

course code: MAT112

Topics : Integration, differentiation

Go to 40 Elementary Differential and Integral Calculus practice question past questionDepartment: Science and Technology

Year Of exam: 2019

school: Federal University of Agriculture, Abeokuta

course code: MTS101, MTS102

Topics : Set theory, real numbers, complex numbers, rational functions, partial fraction, binomial expansion, sequence, series, matrices, Trigonometry, Differentiation, integration

Go to Tutorial workbook for MTS101 & MTS102 past questionDepartment: Science and Technology

Year Of exam: 2018

school: Federal University of Agriculture, Abeokuta

course code: MTS105, BIO103, BIO101

Topics : surd, remainder theorem, partial fraction, series, geometric mean, plant, leaf, homeostasis, environment, photosynthesis

Go to Algebra and trigonometry & Introductory physiology MOCK CAT past questionDepartment: Science and Technology

Year Of exam: 2019

school: Federal University, Oye-Ekiti

course code: MTH103

Topics : parabola, circle, hyperbola, locus, ellipse

Go to 40 Elementary mathematics 3 tutorial questions by Temiwhite XYB past questionDepartment: Science and Technology

Year Of exam: 2020

school: University of Benin

course code: MTH125

Topics : Differential Equations, dynamics

Go to 97 Differential Equations and Dynamics Tutorial questions past questionDepartment: Science and Technology

Year Of exam: 2020

school: University of Benin

course code: MTH110

Topics : Sets, binary operation, partial fractions, mathematical induction, real numbers, remainder theorem, factor theorem, polynomial, mapping, complex number, Argand diagram, trigonometric function, sequence, series, recurrency, D'Alembert ratio test, permutation, combination

Go to Sets, binary operation, partial fractions, mathematical induction past questionDepartment: Science and Technology

Year Of exam: 2019

school: Federal University of Technology, Owerri

course code: MTH203

Topics : differential equation, linear, nonlinear, set, wronskian, Bernoulli, Laplace transform

Go to ORDINARY DIFFERENTIAL EQUATIONS 1-2018&2019 past questionDepartment: Science and Technology

Year Of exam: 2020

school: Federal University of Agriculture, Abeokuta

course code: MTS105

Topics : Set theory, matrix

Go to Algebra and Trigonometry Tutorial questions and solutions by Adeagbo Michael Olumide,Adesina Agboola past questionDepartment: Science and Technology

Year Of exam: 2017

school: Federal University of Agriculture, Abeokuta

course code: CHM103, ANP101, MTS105, PCP101, PHS105, CHM101

Topics : Genetics, Animal Physiology, Algebra, Trigonometry, plant physiology, physics

Go to CHM103 , ANP101, MTS105, PCP101,PHS105,CHM101 Mock examination by Adams family past questionDepartment: Science and Technology

Year Of exam: 2019

school: Federal University of Agriculture, Abeokuta

course code: MTS102

Topics : limits, Calculus, trignometry, domain, range, continuity, differentiation, integration

Go to Calculus and trignometry past questionDepartment: Science and Technology

Year Of exam: 2016

school: University of Ilorin

course code: MAT329

Topics : Complex-valued function, Milne-Thompson, analytic function, Cauchy-Reimann equation, continuity, differentiation, Integration

Go to Complex analysis 1 Test and exam-2009,2013,2014,2015,2016 past questionDepartment: Science and Technology

Year Of exam: 2021

school: Air Force Institute of Technology

course code: MTH202

Topics : differential equation, Bernoulli equation, Homogenous differential equations

Go to Elementary Differential Equation past questionDepartment: Science and Technology

Year Of exam: 2019

school: Federal University of Technology, Minna

course code: MAT112

Topics : parabola, vector, acceleration

Go to 100 Geometry and Trigonometry E-Test solution by InfoMas past questionDonate

We put a lot of effort and resources to keep the materials you enjoy in LearnClax free.

Consider making a donation by buying points.