Donate

We put a lot of effort and resources to keep the materials you enjoy in LearnClax free.

Consider making a donation by buying points.

You will find **Mathematics for users PDF** which can be downloaded for FREE on this page. Mathematics for users is useful when preparing for MAT101 course exams.

**Mathematics for users** written by **OO Ugbebor, UN Bassey** was published in the year 2017 and uploaded for 100 level **Science and Technology students** of **University of Ibadan (UI)** offering **MAT101** course.

Mathematics for users can be used to learn exponents, logarithms, functions, polynomials, exponential functions, inequalities, inequality symbol, inequality rules, finite series, arithemetic progression, geometric progression, limit, continuity, differentiation, integration, indefinite integrals, definite integrals, approximate integration, linear programming .

Technical Details |
---|

Uploaded on: 25-September-2022 |

Size: 43.99 MB |

Number of points needed for download: 31 |

Number of downloads: 1 |

other related books

Department: Science and Technology

Author: GeorgeThomas, Joel Hass, Christopher Heil, Maurice Weir

school: University of Ilorin

course code: MAT112

Topics : Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Go to Thomas Calculus ,14th edition PDFDepartment: Science and Technology

Author: Elka Block, Frank Purcell

school: University of Ilorin

course code: MAT112

Topics : Calculus, Trigonometric Functions, functions, limits, continuity, One-Sided Limits, Differentiation Rules, Derivatives, chain rule, implict differentiation, related rates, linearization, differentials, Mean Value Theorem, integrals, Monotonic Functions, First Derivative Test, Concavity, Curve Sketching, Applied Optimization, antiderivatives, Sigma Notation, limits of Finite Sums, Definite integral, Transcendental Functions, inverse functions, natural logarithms, exponential functions, exponential change, seperable differential equation, Indeterminate Form, L’Hôpital’s Rule, Inverse Trigonometric Functions, Hyperbolic Functions, Integration by Parts, integration, trigonometric integrals, trigonometric substitution, Integral Tables, Computer Algebra Systems, probability, numerical integration, improper integrals, probability, First-Order Differential Equations, Slope Fields, Euler’s Method, First-Order Linear Equations, Infinite Sequences, infinite Series, integral test, comparison test, absolute convergence, power series, alternating series, Taylor series, Maclaurin series, Parametric Equations, Polar Coordinates, Conic Sections, vector, Partial Derivatives, Lagrange Multipliers, Multiple Integrals, vector fields, Path Independence, Conservative Fields, Potential Functions, Green’s Theorem, Surface Integrals, Stokes Theorem, Divergence Theorem

Go to Thomas Calculus Early Transcendentals, 13th Edition Instructors Solutions Manual PDFDepartment: Science and Technology

Author: MAT UI

school: University of Ibadan

course code: MAT101

Topics : Exponents, Logarithms, Zero Exponent, Negative-Integer Exponent, Rational Exponents, Radical Forms

Go to Exponents and Logarithms PDFDepartment: Science and Technology

Author: George Thomas, Ross Finney

school: Federal University of Agriculture, Abeokuta

course code: MTS101

Topics : Calculus, Analytic Geometry, real numbers, real line, coordinates, functions, shifting graphs, trignometric functions, rates of change, limits, continuity, tangent lines, derivative of a function, differentiation rules, rates of change, chain rule, derivatives, implicit differentiation, rational exponents, extreme values of functions, mean value theorem, first derivative test, optimization, linearization, differentials, Newton's method, integration, indefinite integrals, differential equations, initial value problems, mathematical modelling, Riemann sums, definite integrals, mean value theorem, fundamental theorem, numerical integration, cylindrical shells, application of integrals, work, fluid pressure, inverse functions, natural logarithms, transcendental functions, L'Hopital's rule, inverse trignometric functions, hyperbolic functions, first order differential equations, Euler's numerical method, Integration formulas, integration by parts, integral tables, infinite series, power series, Maclaurin series, Taylor series, conic sections

Go to Calculus and Analytic Geometry,9th Edition PDFDepartment: Science and Technology

Author: Frank Ayres, Elliott Mendelson

school: Nnamdi Azikiwe University

course code: MAT231

Topics : Calculus, linear coordinate systems, absolute value, inequalities, rectangular coordinate systems, lines, circles, parabolas, ellipses, hyperbolas, conic sections, functions, limits, continuity, continuous function, derivative, delta notation, chain rule, inverse functions, implicit differentiation, tangent lines, normal lines, critical numbers, relative maximum relative minimum, cure sketching, concavity, symmetry, points of inflection, vertical asymptotes, trigonometry, trigonometric functions, inverse trigonometric functions, rectilinear motion, circular motion, differentials, Newton's method, antiderivatives, definite integral, sigma notation, natural logarithm, exponential functions, logarithmic functions, L'hopital's rule, exponential growth, decay, half-life, integration by parts, trigonometric integrands, trigonometric substitutions, improper integrals, parametric equations, curvature, plane vectors, curvilinear motion, polar coordinates, infinite sequences, infinite series, geometric series, power series, uniform convergence, Taylor's series, Maclaurin series, partial derivatives, total differential, differentiability, chain rules, space vectors, directional derivatives, vector differentiation, vector integration, double integrals, iterated integrals, centroids, triple integrals, Separable Differential Equations, Homogeneous Functions, Integrating Factors, Second-Order Equations

Go to Schaum's Outline of Calculus, 6th edition PDFDepartment: Science and Technology

Author: Joel Hass, Christopher Heil, Przemyslaw Bogacki, Maurice Weir, George Thomas

school: Federal University of Agriculture, Abeokuta

course code: MTS241

Topics : functions, combining functions, trigonometric functions, exponential functions, inverse functions, logarithms, limit, continuity, derivatives, differentiation rules, chain rule, implicit differentiation, inverse trigonometric functions, related rates, linearization, differentials, mean value theorem, monotonic functions, applied optimization, integrals, transcendental functions, hyperbolic functions, integration, trigonometric integrals, trigonometric substitution, numerical integration, improper integrals, infinite sequences, infinite series, integral test, comparison test, absolute convergence, power series, Taylor series, Maclurin series, parametric equations, polar coordinates, vectors, dot product, cross product, vector-valued functions, partial derivatives, saddle points, multiple integrals, vector fields, Euler equations

Go to University calculus early transcendentals, 4th edition PDFDepartment: Engineering

Author: Steven Chapra, Raymond Canale

school: University of Uyo

course code: GRE411

Topics : Mathematical Modeling, Engineering Problem Solving, Programming, Software, structured programming, Modular Programming, EXCEL, MATLAB, Mathcad, Significant Figures, accuracy, precision, error, Round-Off Errors, Truncation Errors, Taylor Series, Bracketing Methods graphical method, bisection method, False-Position Method, Simple Fixed-Point Iteration, Newton-Raphson Method, secant method, Brent’s Method, multiple roots, Roots of Polynomials, Müller’s Method, Bairstow’s Method, Roots of Equations pipe friction, Gauss Elimination, Naive Gauss Elimination, complex systems, Gauss-Jordan, LU Decomposition, Matrix Inversion, Special Matrices, Gauss-Seidel, Linear Algebraic Equations, Steady-State Analysis, One-Dimensional Unconstrained Optimization, Parabolic Interpolation, Golden-Section Search, Multidimensional Unconstrained Optimization, Constrained Optimization, linear programming, Nonlinear Constrained Optimization, Least-Squares Regression, linear regression, polynomial regression, Multiple Linear Regression, Nonlinear Regression, Linear Least Squares, interpolation, Newton’s Divided-Difference Interpolating Polynomials, Lagrange Interpolating Polynomials, Inverse Interpolation, Spline Interpolation, Multidimensional Interpolation, Fourier Approximation, Curve Fitting, Sinusoidal Functions, Continuous Fourier Series, Fourier Integral, Fourier Transform, Discrete Fourier Transform, Fast Fourier Transform, power spectrum, Newton-Cotes Integration Formulas, Trapezoidal Rule, Simpson’s Rules, multiple integrals, Newton-Cotes Algorithms, Romberg Integration, Adaptive Quadrature, Gauss Quadrature, Improper Integrals, Monte Carlo Integration, Numerical Differentiation, High-Accuracy Differentiation Formulas, Richardson Extrapolation, partial derivatives, Numerical Integration, Runge-Kutta Method, Euler’s Method, Boundary-Value Problems, Eigenvalue Problems, Finite Difference, Elliptic Equations, Laplace equation, Boundary Condition, Heat-Conduction Equation, Crank-Nicolson Method, Finite-Element Method

Go to Numerical methods for engineers ,8th edition PDFDepartment: Science and Technology

Author: Robert Bartle, Donald Sherbert

school: Nnamdi Azikiwe University

course code: MAT251

Topics : real analysis, sets, functions, mathematical induction, finite sets, infinite sets, real numbers, absolute value, real line, intervals, sequences, series, limit theorems, monotone sequences, Cauchy criterion, limits, limit theorems, continuous functions, uniform continuity, inverse function, monotone functions, derivative, mean value theorem, L' Hospital rule, Taylor's theorem, Riemann integral, Riemann integral functions, fundamental theorem, Darboux integral, approximate integrations, pointwise convergence, uniform convergence, exponential functions, logarithmic function, trigonometric functions, infinite series, absolute convergence, infinite integrals, convergence theorems, continuous functions, metric spaces

Go to Introduction to Real Analysis, 4th Edition PDFDepartment: Science and Technology

Author: CE Chidume, Chukwudi Chidume

school: Federal University of Technology, Owerri

course code: MTH301

Topics : real number system, order relation, natural numbers, countable sets, uncountable sets, bounded sets, limits, Monotone Sequences, Sandwich Theorem, limit theorems, Bolzano-Weierstrass Theorem, Limit Superior, Limit Inferior, Cauchy Sequences, continuity, topological notions, One-sided Continuity, Continuity Theorems, Uniform Continuity, Uniform Continuity Theorems, closed sets, compact sets, continuous maps, differentiability, derivative, Rolle’s Theorem, Mean Value Theorem, L’Hospital’s Rule, Nonnegative Real Numbers series, Integral Test, Comparison Test, Limit Comparison Test, Cauchy’s Root Test, D’Alembert’s Ratio Test, Alternating Series, Absolute Convergence, Conditional Convergence, Riemann Integral, Integration, Uniform convergence, Power Series, Equicontinuity, Arzela-Ascoli Theorem

Go to Foundations of Mathematical Analysis PDFDepartment: Science and Technology

Author: Ogunfolu Bamidele

school: University of Ibadan

course code: MAT101

Topics : integration, indefinite integrals arithmetic, standard integrals, definite integral, integration by substitution, finding volumes by integration

Go to Integration PDFDepartment: Engineering

Author: John Bird

school: Federal University of Technology, Owerri

course code: ENG307, EN308

Topics : Algebra, partial fraction, logarithm, exponential function, inequality, arithmetic progression, geometric progression, binomial series, Maclaurin's series, iterative method, binary, octal, hexadecimal, boolean algebra, logic circuits, trigonometry, circle, Trigonometric waveforms, hyperbolic functions, Trigonometric identities, Trigonometric equation, compound angles, irregular area, irregular volume, graph, complex numbers, De Moivre’s theorem, matrix, determinant, vector geometry, vector, scalar product, vector product, differentiation, calculus, integration, differential equation, parametric equations, implicit functions, Logarithmic differentiation, hyperbolic functions, Partial differentiation, Total differential, rate of change, Maxima, minima, saddle point, integral calculus, hyperbolic substitution, trignometric substitution, Integration by parts, Reduction formulae, double integrals, triple integrals, Numerical integration, Homogeneous first-order differential equation, first-order differential equation, differential calculus, Linear first-order differential equation, Numerical methods, power series, Statistics, probability, Mean, median, mode, standard deviation, binomial distribution, Poisson distribution, normal distribution, Linear correlation, Linear regression, Sampling, estimation theories, Significance testing, Chi-square test, distribution-free test, Laplace transform, Inverse Laplace transform, Heaviside function, Fourier series, periodic functions, non-periodic function, even function, odd function, half-range fourier series, harmonic analysis, Z-Transform

Go to Higher Engineering Mathematics ,Eighth edition PDFDepartment: Science and Technology

Author: MAT UI

school: University of Ibadan

course code: MAT101

Topics : Inequalities, inequality rules, linear inequality, quadratic inequality

Go to Inequalities PDFDepartment: Science and Technology

Author: Ogunfolu Bamidele

school: University of Ibadan

course code: MAT101

Topics : limits, evaluating limits, special limits, continuity

Go to Limits of functions PDFDepartment: Science and Technology

Author: Ogunfolu Bamidele

school: University of Ibadan

course code: MAT101

Topics : Differentiation, Rules of differentiation, standard derivatives, limiting values, implicit functions differentiation, higher derivatives, approximation principle, rate of change

Go to Differentiation PDFDepartment: Science and Technology

Author: Ogunfolu Bamidele

school: University of Ibadan

course code: MAT101

Topics : Polynomials, polynomial addition, polynomial subtraction, product of polynomials, polynomials division, factor theorem, remainder theorem, quadratic equations theory, discriminant, cubic equations roots

Go to Polynomials PDFDepartment: Science and Technology

Author: MAT UI

school: University of Ibadan

course code: MAT101

Topics : Logarithms, logarithm properties, change of base formula, Equations involving Logarithms

Go to Logarithms PDFDepartment: Science and Technology

Author: Hamdy Taha

school: University of Ibadan

course code: STA343

Topics : Operations Research, Operations Research models, linear programming, two-variable linear programming model, modelling, simplex method, sensitivity analysis, artificial starting solution, duality, post-optimal analysis, primal-dual relationships, simplex algorithms, transportation model, assignment mode, network mode, shortest-route problem, Minimal spanning tree algorithm, maximal flow model, critical path model, revised simplex method, revised algorithm, bounded-variables algorithm, parametric linear programming, goal programming, goal programming formulation, goal programming algorithm, integer linear programming, Heuristic programming, greedy heuristic, local search heuristic, metaheuristic, constriant programming, traveling salesperson problem, deterministic dynamic programming, dynamic programming, inventory modelling, probability, probability distribution, decision analysis, games, game theory, probabilistic inventory models, Markov chains, queuing systems, simulation modeling, classical optimization theory, Nonlinear programming algorithms

Go to Operations Research ,10th edition PDFDepartment: Engineering

Author: Dexter Booth, Ken Stroud

school: Federal University of Technology, Owerri

course code: ENG307, ENG308

Topics : Engineering Mathematics, Algebra, power, logarithms, polynomials, linear equations, polynomial equations, binomials, binomial expansions, sigma notation, factorials, combinations, partial fractions, trigonometry, Trigonometric identities, Trigonometric functions, exponential functions, differentiation, Newton–Raphson iterative method, integration, complex numbers, hyperbolic functions, determinants, matrices, eigenvalues, eigenvectors, Cayley–Hamilton theorem, vector, vector representation, sequences, infinite series, curves, curve fitting, Asymptotes, Systematic curve sketching, Correlation, partial differentiation, reduction formulas, approximate integration, integration application polar coordinate systems, multiple integrals, first-order differential equations, homogenous equations, Laplace transform, probability, Conditional probability, Probability distributions, Continuous probability distributions

Go to Engineering Mathematics ,8th edition PDFDepartment: Engineering

Author: Erwin Kreyszig, Herbert Kreyszig, Edward

school: University of Nigeria, Nsukka

course code: MTH207

Topics : Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Go to Advanced Engineering Mathematics ,10th Edition PDFDepartment: Engineering

Author: Herbert Kreyszig, Erwin Kreyszig

school: University of Nigeria, Nsukka

course code: MTH207

Topics : Ordinary Differential Equations, Separable Ordinary Differential Equations, exact Ordinary Differential Equations, linear Ordinary Differential Equations, Orthogonal Trajectories, Homogeneous Linear Ordinary Differential Equations, Differential Operators, Euler–Cauchy Equations, Higher Order Linear Ordinary Differential Equations, nonlinear Ordinary Differential Equations, Power Series, egendre’s Equation, Legendre Polynomials, Extended Power Series, Frobenius Method, Bessel’s Equation, Bessel Functions, Laplace Transforms, First Shifting Theorem, Linear Algebra, Vector Calculus, Matrices, Vectors, Determinants, Linear Systems, Determinants, Cramer’s Rule, Gauss–Jordan Elimination, linear transformation, Matrix Eigenvalue Problems, Eigenvalues, Eigenvectors, Eigenbase, Vector Differential Calculus, vector product, Vector Integral Calculus, Integral Theorems, line integrals, Surface Integrals, Stokes’s Theorem, Fourier Analysis, Partial Differential Equations, Fourier series, Sturm–Liouville Problems, Forced Oscillations, Fourier Integral, Fourier Cosine, Sine Transforms, Fourier Transform, Fast Fourier Transforms, Rectangular Membrane, Double Fourier Series, heat equation, Complex Numbers, Complex Differentiation, Cauchy–Riemann Equations, Exponential Function, Complex Integration, Cauchy’s Integral Formula, Cauchy’s Integral Theorem, Taylor series, Laurent Series, Residue Integration, Conformal Mapping, Complex Analysis, Potential Theory, Numeric Analysis, Numeric Linear Algebra, Unconstrained Optimization, Linear Programming, Combinatorial Optimization, Probability, Statistics, Data Analysis, Probability Theory, Mathematical Statistics

Go to Advanced Engineering Mathematics Student Solutions Manual and Study Guide,10th edition Volume 1&2 PDFDepartment: Science and Technology

Author: FM Nkwuda

school: Federal University of Agriculture, Abeokuta

course code: MTS102

Topics : definite integrals application

Go to Application of definite integrals to area and volume PDFrelated Past Questions

Department: Science and Technology

Year Of exam: 2020

school: University of Benin

course code: MTH112

Topics : Function limit, continuity, differentiation, product rule theorem

Go to Function limit and continuity past questionDepartment: Science and Technology

Year Of exam: 2013

school: University of Ilorin

course code: MAT112

Topics : Functions, continuity, Limits of Functions, Differentiation, Maxima, minima, Point of inflexion, Taylors series, Maclaurin series

Go to MAT112 Practice questions for UNILORITES past questionDepartment: Science and Technology

Year Of exam: 2019

school: University of Ilorin

course code: ZLY106

Topics : Mammalian forms, Mammalian functions

Go to 36 Mammalian forms and functions MSSN past questionDepartment: Science and Technology

Year Of exam: 2020

school: University of Ilorin

course code: PLB108

Topics : Bacteria, lichen, fungi

Go to 45 Plant Diversity, Forms and Functions past questionDepartment: Science and Technology

Year Of exam: 2020

school: University of Ilorin

course code: PLB108

Topics : Plant Diversity, fertilization, gymnosperms, Abiogenesis

Go to 200 Plant Diversity, Forms and Functions past questionDepartment: Science and Technology

Year Of exam: 2019

school: University of Ilorin

course code: ZLY106

Topics : Mammalian forms

Go to 20 Mammalian forms and functions Team sherif past questionDepartment: Science and Technology

Year Of exam: 2020

school: University of Ilorin

course code: ZLY106

Topics : blood system, vessels, capillaries

Go to 150 Mammalian forms and functions Mock past question past questionDepartment: Science and Technology

Year Of exam: 2017

school: University of Ilorin

course code: PLB108

Topics : spermatophyte, genera, plant, angiosperm, gymnosperm, flower, seed, root, algae, lichen, fungi, mushroom, basidiospore, Abiogenesis, Bacteria, Virus

Go to Plant Diversity (Forms and Functions) Continuous assessment and exam past questionDepartment: Science and Technology

Year Of exam: 2013

school: Chukwuemeka Odumegwu Ojukwu University

course code: MTH101/111

Topics : sequence, prime numbers, geometric progression, arithemetic progression, power set

Go to Elementary Maths past questionDepartment: Science and Technology

Year Of exam: 2014

school: Chukwuemeka Odumegwu Ojukwu University

course code: MTH101/111

Topics : sequence, prime numbers, geometric progression, arithemetic progression, power set

Go to Elementary Maths past questionDepartment: Science and Technology

Year Of exam: 2015

school: Chukwuemeka Odumegwu Ojukwu University

course code: MTH101/111

Topics : sequence, prime numbers, geometric progression, arithemetic progression, power set

Go to Elementary Maths past questionDepartment: Science and Technology

Year Of exam: 2018

school: Federal University of Technology, Owerri

course code: MTH101

Topics : logarithm, partial fraction, inequality, linear expansion, complex number, arithmetic progression, geometric progression

Go to ELEMENTARY MATHEMATICS 1-TEST&EXAM-2013-2018 past questionDepartment: Science and Technology

Year Of exam: 2020

school: Federal University of Technology, Owerri

course code: MTH101

Topics : Logarithm, indices, combination, complex numbers, binomial expansion, geometric progression, inequalities, partial fraction, remainder theorem

Go to Answers to Elementary Mathematics test mock by WCCCF FUTO past questionDepartment: Science and Technology

Year Of exam: 2018

school: Federal University of Technology, Owerri

course code: CSC510

Topics : model development, mathematical model, markov model, exponential model, cubic model, inverse model, CPU, linear programming, allocation problem

Go to COMPUTER MODELING SIMULATION AND FORECASTING past questionDepartment: Science and Technology

Year Of exam: 2019

school: Federal University of Agriculture, Abeokuta

course code: MTS101, MTS102

Topics : Set theory, real numbers, complex numbers, rational functions, partial fraction, binomial expansion, sequence, series, matrices, Trigonometry, Differentiation, integration

Go to Tutorial workbook for MTS101 & MTS102 past questionRecommended Computer Based Tests

Donate

We put a lot of effort and resources to keep the materials you enjoy in LearnClax free.

Consider making a donation by buying points.